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ABSTRACT 

Certification requirements, optimization and 
minimum project costs, design of flight control 
laws and the implementation of flight simulators 
are among the principal applications of inverse 
problem applications in the aeronautical industry. 
The problem of aircraft identification and 
parameter estimation demands for accurate 
mathematical model of the aerodynamics and 
adequate experimental flight data gathering and 
processing. The aircraft dynamic modeling is 
characterized by aerodynamic and control 
derivatives whose values can be directly 
determined from flight test data. This work 
describes the application of the output-error 
method using the Nelder-Mead and Levenberg-
Marquardt algorithms to obtain the aerodynamic 
and control derivatives of a regional jet aircraft. 
Unlike others identification methods, based on 
equation-error, the output-error method gives 
unbiased parameter estimation in the presence of 
measurement noise. In this work, experimental 
results for estimation of the lateral-directional 
aerodynamic derivatives, using flight test data 
provided by EMBRAER, are presented. 
 
INTRODUCTION 

Modeling and simulation (MS) has become an 
integral part of the aeronautical industry design 
and evaluation processes. One of the major parts 
of MS is system identification and parameter 
estimation, applied to complex aerodynamic 
system such as an airplane. System Identification 
is a general procedure to match the observed 
input-output response of a dynamic system by a 
proper choice of an input-output model and its 
physical parameters. Its application to aircraft 
systems involves many interdisciplinary aspects 
of aeronautical engineering [1], including: (i) 
design of maneuvers to optimize system 

identificability; (ii) development of flight data 
measuring techniques and digital data processing 
[2] for reduction of sensor noise and time delay 
for both input and output measurement processes; 
(iii) development of suitable flight mechanics 
models and corresponding flight simulation for 
synthetic data generation and mathematical 
prediction of maneuver response and (iv) 
development of parameter estimation 
methodologies to extract unknown physical 
aircraft parameters from flight test data. From this 
point of view, the aircraft system identification or 
inverse modeling comprises proper choice of 
aerodynamic models, the development of 
parameter estimation techniques by optimization 
of the mismatch error between predicted and real 
aircraft response and the development of proper 
tools for integration of the equations of motion 
within the system simulation and correlated 
activities [3]. 

This work focuses the determination of the 
stationary aerodynamic derivatives of a fixed 
wing regional jet airplane, using a linearized 
lateral-directional model for the aircraft. The 
effectiveness of the implemented parameter 
estimation method was tested by matching real 
flight test data with the predicted response of the 
aircraft. Two algorithms were used to solve the 
associated optimization problem: (i) Nelder-Mead 
and (ii) Levenberg-Marquardt [4]. 

In the aeronautical industry, the output-error 
method is one of the most used estimation 
methods for aerodynamic modeling and aircraft 
identification [4, 5, 6]. This method has several 
desirable statistical properties and it is equally 
applicable to fully nonlinear dynamical systems, 
accounting for measurements noise [6]. 

In the first part of this work the airplane 
dynamic model and the problem of identification 
and parameter estimation are reviewed. Special 
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attention was given to the Gauss-Newton and 
Levenberg-Marquardt algorithm description. The 
maneuver chosen for identification and estimation 
purposes was a coordinated doublet for both the 
aileron and rudder inputs, denoted in the figure 
captions as δa(t) and δr(t), respectively. The 
results obtained by the two parameter estimation 
algorithms were compared using the same set of 
flight test data. 
 
Nomenclature 
x, y: state and 
observation vectors 

ay(t): y -axis 
acceleration 

Ve: true airspeed φ(t): angle of roll 

α(t): angle of attack δa(t) :aileron deflection 

β(t): angle of sideslip δr(t): rudder deflection 

p(t): rolling velocity S: wing area  

r(t): yawing velocity M: aircraft mass 

ρe: air density θ: parameter vector 

 
MODEL AND ESTIMATION ALGORITHM 

The aircraft dynamic system is described by a 
stochastic nonlinear hybrid model in the form: 
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where x(t) is the continuous state vector, x0 the 
known initial state, u(t) is the control input vector, 
y(k) is observation vector measured on N discrete 
time. The vectors (a, c) and matrices (F, G) of the 
adopted model are functions of θ, the vector 
containing the parameters to be estimated. 
Depending on the aircraft model, the system 
functions (a, c) are nonlinear vector functions of 
the state and parameter vector. The matrices F 
and G are linear time-invariant matrices 
representing sensor and state perturbation effects, 
respectively. 

The process noise w(t), and measurement 
noise , are assumed to be Gaussian white 
noise with zero mean and identity covariance 
matrix. The output-error method is well known to 
be sensitive to process noise effects, and is not 
addressed in this particular work. In general, the 
assumption that the process noise is negligible 
must be thoroughly verified as was done in the 
present case where no turbulence effects were 
detected. 

)(kv

In this work the inverse problem formulation 
is applied to the lateral-directional movement of 
the aircraft, for which the linear state and output 
equations can be written as [6], 
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The above dynamical equation has 14 
unknown parameters that need to be estimated, 
giving θ ∈ R14, 
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As usually formulated in the aeronautical 
literature [5, 6], the components of the vector θ, 
are the dimensional aerodynamic derivatives, e.g. 
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equations (3a), (3b), (3c):  
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where q  is the dynamic pressure ( 2..
2
1

TVq ρ= ), 

 is the wing reference area, S ρ  is the density, b  
is the wing span and  c  is the mean aerodynamic 
chord. 
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Estimation Methods 
The output-error method is one of the most 

used estimation methods in aircraft identification 
and aerodynamic parameter estimation [1, 3, 6, 
8]. It has several desirable statistical properties, 
including its application to nonlinear dynamical 
systems and the proper accounting of 
measurements noise [4]. The present inverse 
problem starts with the Gauss-Newton 
optimization process involving the output 
prediction error: 
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where )1( +ky  is the measured output, is 
the prediction, and  S is the sensitivity function, 
as defined in eq. (7), below. 

)1(ˆ +ky

The cost function is written as [7,8], 
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 (5) 
The application of the standard Gauss-Newton 
procedure [5, 7] for the minimization of the cost 
function results the following update for the 
unknown parameter, θ: 
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The cost function minimization needs the 

evaluation of the sensitivity function at the time 
(k+1). The sensitivity of the prediction error i, 
with respect of the unknown parameter j, is 
denoted by )1( +kSij , 
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For a better understanding about the updated 
parameter , we will investigate the Hessian of 
the cost. To do that, we will rewrite eq.(5) as: 
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The relationship between the sensitivity matrix 

 and the Hessian is given by, )(kS

)()()( kSkSkH T≈      (9) 
and considering eq. (6) and (9), it is noted that the 
recursion formula given in eq. (6) needs the 
inversion of the Hessian matrix . 

In this work it is compared the effectiveness 
of two output-error methods, one is based on 
direct search simplex method [7] - the Nelder-
Mead, and the other is based on a quasi-Newton 
methodology [5, 7] – the Levenberg-Marquardt. 
The advantage of the simplex method is that it 
does not need information about the cost function 
gradient as given by the error sensitivity function 
with relation to the estimated parameters. It only 
needs the direct cost function evaluation in terms 
of the prediction error. In this case it is possible to 
apply both linear and nonlinear model 
parameterization. For details on the Neder-Mead 
method, see for instance [9]. 

On the other hand, the Quasi-Newton 
Levenberg-Marquardt method requires 
information about the gradient of the cost 
function and the Hessian [7]. This method is a 
compromise between the cost function 
minimization and the need for keeping small 
parameter update. In this framework, the cost 
function is modified to, 
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The minimization of the above relation results the 
following modified parameter update equation, 
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where, ∆θ was calculated by solving the resulting 
system of algebraic equations by the singular 
value decomposition (SVD) method [8]. 
  
Matching of Flight Test Data 

The aerodynamic derivatives associated with 
the lateral-directional model, as shown in eq. (2), 
were estimated by matching the real flight test 
data with the model predicted simulation. A 
dutch-roll maneuver of a regional transport 
aircraft was used to investigate the effectiveness 
of the two discussed output-error methods: (i) the 
Nelder-Mead and (ii) the Levenberg-Marquardt; 
applied to estimate the aerodynamic parameter 
vector defined in eq. (2b). 

The aircraft input signals are the aileron δa(t) 
and rudder deflections δr(t) and the output signals 
are five attitude parameters: sideslip angle β(t), 
roll rate p(t), yaw rate r(t), bank angle φ(t), and 
lateral acceleration ay(t). The experimental input 
and output signals are shown in figs. 1a to 1d. 

The time history of the aircraft input-output 
relation was measured with a sampling time of 
31.25 s, and the 914 measured points gives an 
observation time window of approximately 28 s. 

 
Fig.1a - Aileron δa (black) and rudder δr (gray) 

inputs for the dutch-roll maneuver. 
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Fig.1.b. Aircraft sideslip response β(black) and 
bank angle response φ(gray), measured in rad. 

 
Fig. 1c – Aircraft roll rate, p(black) and yaw rate, 

r(gray), measured in rad/s. 

 
Fig. 1d- Aircraft lateral acceleration ay(gray), 

measured in m/s2. 
 

The efficiency of the two estimation methods 
can be assessed by comparing the evolution of the 
cost function, as shown in figs. 2a and 2b. Fig. 2.a 
shows the cost function evolution of the Nelder-
Mead method, while fig. 2.b shows the cost 
evolution for Levenberg-Marquardt algorithm. In 
the first case, around 1900 iterations are necessary 
to reduce the cost function to 3.72, while in the 
second case it takes only 25 iterations to 
significantly reduced values. 

 
Fig. 2.a – Cost function evolution calculated 
with the Nelder-Mead simplex algorithm. 

 

 
Fig. 2.b – Cost function evolution calculated 
with the Levenberg-Marquardt method. 

 
From the above figures it is concluded that 

both methods achieve a good minimization of the 
cost function with consistent estimations for the 
aerodynamic derivatives.  

Table 1 shows the final values of the 
nondimensional aerodynamic derivatives obtained 
by the Nelder-Mead and the Levenberg-
Marquardt algorithms. The Nelder-Mead method 
was initialized with the values, displayed in the 
table. Then we use the values achieved with this 
method to initialize the Levenberg-Marquardt 
algorithm, since this method is more 
computationally demanding and so a good 
estimate can speed up convergence. In the results 
reported in what follows a quadratic cost with 
weighting factor equal to one is used. A 
maximum likelihood cost could also be used, in 
which case the weighting factor would be the 
estimated covariance matrix associated to the 
prediction errors.   
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Table 1 – Parameter Estimation of the 
Aerodynamic and Control Derivatives 

 
 Initial 

Parameter 
Value 

Nelder-
Mead 
Algorithm 

Levenberg-
Marquardt 
Algorithm 

βCY  -0.0068 -0.0077 -0.0058 

βCL  -0.1861 -0.1821 -0.1514 

pCL  -0.3562 -0.3272 -0.4718 

rCL  -1.1700 1.6393 1.4942 

βCN  0.0678  0.0644 0.0415 

pCN  0.0616 0.0538 -0.0275 

rCN  -2.7110 -1.2157 -0.6765 

aCYδ  0.0068  0.0099  0.0052 

rCYδ  -0.0068 -0.0079 -0.0073 

aCLδ  -0.0001 -0.0032 -0.0029 

rCLδ  -0.0198 0.0623  0.0704 

aCNδ  0.0016 0.0023 -0.0405 

rCNδ  -0.2037 -0.1147 -0.1029 
 

Since the flight data employed to generate 
Table 1 was obtained experimentally and no wind 
tunnel tests are available, there are no true 
parameter values for deciding which method 
achieved the best performance. For this, an 
indirect measure of performance is used, based on 
the prediction error. So, the main focus of the 
present inverse aerodynamic modeling is to check 
that this local minimization procedure can result 
on good matching to the experimental flight data 
and stable input-output relation for the aircraft. 
This prediction capability, as obtained by the two 
output-error methods, can be accessed from the 
model validation results shown in Figs 3 and 4, 
below. 

Figures 3.a, 3.b, 3.c, 3.d and 3.e show that, the 
flight data matching achieved with the Nelder-
Mead method provides a good initial parameter 
estimation procedure, since the final prediction 
error is reasonable. In the Levenberg-Marquardt 
algorithm (Figs. 4.a, 4.b, 4.c, 4.d and 4.e), the 
estimation error was smaller, compared to the 
Nelder-Mead algorithm, but higher computational 
processing time was demanded. 

 

Fig. 3.a – Measured sideslip angle β(t) in black 
and estimated value (gray) by the Nelder-Mead 
method. 

 

 
Fig. 3.b – Measured roll angular velocity p(t) 
(black) and estimated value (gray) by the Nelder-
Mead method. 

 

 
Fig. 3.c – Measured yaw angular velocity r(t) 
(black) and estimated value (gray) - Nelder-Mead. 
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Fig. 3.d – Measured roll angle φ(t), (black) and 
estimated value (gray) - Nelder-Mead 

 

 
Fig. 3.e – Measured lateral acceleration ay(t), 
(black) and estimated value (gray) - Nelder-Mead 

 
In above figures, the same sampling time of 

31,25 seconds were used, corresponding to a time 
axis of approximately 914 discrete points or 28.56 
seconds. 

In a similar way, the same quantitative results 
were obtained with the application of the 
Levenberg-Marquardt match the flight data as 
shown in figs 4a to 4e, below. 

 

 
Fig. 4.a – Measured sideslip angle β (black) and 
estimated value (gray) - Levenberg-Marquardt 
method. 

 
 

Fig. 4.b – Measured roll velocity p (black) and 
estimated value (gray) - Levenberg-Marquardt 
method. 

 

Fig. 4.c – Measured yaw velocity r (black) and 
estimated value (gray) - Levenberg-Marquardt 
method. 

 

 
Fig. 4d – Measured bank angle φ (black) and 

estimated value (gray) - Levenberg-Marquardt 
method. 
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Fig. 4e – Measured lateral acceleration, ay (black) 
and estimated value (gray)- Levenberg-Marquardt 

 
Although figures 3 and 4 lead visually to the 

conclusion that the Levenberg-Marquardt method 
performed better, this conclusion can be formally 
reached by looking at the accumulated prediction 
error (cost function): 3.72 for the Nelder-Mead 
method, and 0.74 for Levenber-Marquardt. 

Besides that, we calculated the RMS error for 
the various outputs, to quantify the difference 
between model output and measurement, for the 
two approaches and show the results in table 2. 
We observe that, for all the outputs the 
Levenberg-Marquardt method presented lower 
RMS error.  

 
Table 2 – RMS error for the outputs 

 Nelder-Mead Leverberg-
Marquardt 

β  0.0143 0.0131 
p  0.0142 0.0132 
r  0.0054 0.0045 
φ  0.0205 0.0143 

ya  0.0187 0.0143 

  
 

CONCLUDING REMARKS 
The results obtained in this work compared 

two output-error methods: the Nelder-Mead (NM) 
and Levenberg-Marquardt (LM) algorithm to 
inverse modeling of an aircraft. The estimation of 
linear aerodynamic derivatives was computed by 
minimization of a cost function based on the 
predicted output error. Both the direct simplex 
(NM) and the quasi-Newton methods (LM) 
presented good convergence properties and 
resulted in good match to the experimental flight 
data. The parameter identification by both 
methods gave consistent results, except for the 
values of four aerodynamic derivatives (see Table 
1), showing that different local minimum can 

provide good predictive capabilities. The NM 
method can be used as an initial estimation 
procedure for the more refined search algorithm 
based on the local gradient function. Some other 
refinements could be achieved by weighting the 
cost function with the inverse of the estimated 
sensor noise covariance [5, 7]. In conclusion the 
Levenberg-Marquardt algorithm has a better 
performance, but the computational associated 
with the calculation of the sensitivity functions 
are much higher. Additionally, the Nelder-Mead 
method can be useful for larger order problems.  
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